

SOIL-MAT ENGINEERS & CONSULTANTS LTD.

401 Grays Road · Hamilton, ON · L8E 2Z3

PROJECT No.: SM 230477-EMarch 1, 2024

RANKIN CONSTRUCTION INC. 20 Corporate Park Drive, Suite 103 St. Catharines, ON L2S 3W2

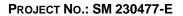
Attention: Colin Donovan

SOIL CHARACTERISATION REPORT SOUTH NIAGARA HOSPITAL MONTROSE ROAD & BIGGAR ROAD NIAGARA FALLS, ONTARIO

Dear Mr. Donovan,

Further to your authorisation, SOIL-MAT ENGINEERS & CONSULTANTS LTD. [SOIL-MAT ENGINEERS] have completed our soil characterisation program for the above noted project site. Our formal comments with respect to the off-site disposal/re-use of surplus soils on an off-site property are summarised herein.

BACKGROUND


It is understood that the construction of the new hospital facility located at Montrose Road and Biggar Road in Niagara Falls, Ontario is anticipated to generate approximately 82,000 cubic metres of surplus soil to be removed from the site. As such, an environmental soil characterisation program is required to characterise the excess soil to be disposed of/re-used off-site, as outlined by Ontario Regulation 406/19. Representative samples of the material to be generated from the Site were secured for submission for laboratory analytical testing and to provide interpretation of the test results with respect to the off-site disposal/re-use of surplus soil.

It is noted that the site has previously had Phase One and Two Environmental Site Assessments [ESAs] conducted by WSP, and that a Record of Site Condition [RSC] has also been filed on the subject site.

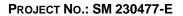
ASSESSMENT OF PAST USES AND SAMPLING AND ANALYSIS PLAN

SOIL-MAT ENGINEERS was provided the following existing reports for the project:

• Phase One ESA, prepared by WSP for Urban & Environmental Management Inc., Project No. 131-13745-01, dated September 30, 2016

- Phase Two ESA, prepared by WSP for Urban & Environmental Management Inc., Project No. 131-13745-01, dated October 1, 2016
- Excess Soil Re-Use Plan Report, prepared by WSP for Niagara Health, Project No. 191-13723-00, dated March 29, 2021

As noted above, it is understood that an RSC has been filed on the site. These reports indicate that the subject site was one utilised as a field landing strip within the 1960s and 1970s, however prior to, and since this time, the site has been used for agricultural purposes. Environmental testing conducting as part of the Phase Two ESA fieldwork, as well as that outlined in the Excess Soil Re-Use Plan Report did not indicate any contamination on the site when compared to the applicable site condition standards, and an RSC has since been filed on the site. Given the previous land use, results of the environmental assessments, and the filing of the RSC, the subject site would be considered a Low Risk site, as outlined in Ontario Regulation 406/19.


Under Section 8 of the Regulation, the site would technically not be required to file a notice in the registry. By extension, there would not be a requirement for the associated 'planning documents', including Assessment of Past Use, Soil Characterisation, etc. However, it is prudent that such documentation is prepared to support the fill movement and acceptance by receiving re-use sites. Given the low-risk status of the property, the scope of sampling and testing need not be as dictated by the Regulation, but rather based on reasonably professional judgement of the QP.

As such, it is considered that the appropriate testing of surplus soil would include analytical testing of forty [40] samples, submitted for a standard panel of Metal and Inorganic parameters, as well as Petroleum Hydrocarbons [PHC] and Benzene Toluene Ethylbenzene and Xylene mixture [BTEX], and seven [7] for SPLP metals.

SITE VISIT AND SOIL SAMPLING

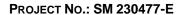
A representative of SOIL-MAT ENGINEERS initially visited the site on June 8, 2023 and recovered a total of forty [40] discrete in-situ samples test excavations at the locations illustrated in the attached Drawing No. 1, Test Pit Location Plan. At the request of the contractor due to requirements of the receiving site, an additional three [3] samples were recovered on February 22, 2024, identified as Samples 101 to 103 on the Test Pit Location Plan. In each case, the samples were secured from between approximately 0.3 to 3 metres below the ground surface via both machine dug and hand dug test pits advanced by representatives of SOIL-MAT ENGINEERS and RANKIN CONSTRUCTION. The recovered soils were noted to consist of brown silty clay/clayey silt.

The soil samples were sealed in pre-cleaned wide mouth, amber glass sample jars and/or vials pre-charged with methanol preservative as supplied by the laboratory. The samples were stored and transported in a cooler and kept under ice packs to minimise

potential volatilisation of select parameters. New disposable sampling gloves were used for the collection of each soil sample with care given not to make contact with the samples and gloves. Dedicated sample retrieval equipment, including a cleaned stainless-steel shovel, was used to retrieve each sample before depositing it directly into the lab supplied sample jar.

LABORATORY ANALYTICAL TESTING

The forty-three [43] soil samples secured from the Site were submitted to AGAT Laboratories [AGAT], [an accredited Canadian Environmental Laboratory] for bulk laboratory analytical testing for metals, hydride forming metals [i.e., arsenic, antimony and selenium], Petroleum Hydrocarbons [PHCs] and benzene, toluene, ethylbenzene and xylene mixture [BTEX] and seven [7] for SPLP metals.


The laboratory analytical test results received in our Office were compared with the applicable Excess Soil Quality Standards under Ontario Regulation 406/19: On-Site and Excess Soil Management, outlined as follows:

- ONTARIO REGULATION 406/19 TABLE 1: Full Depth Background Site Condition Standards Residential/Parkland/Institutional, Industrial/Commercial/Community, as well as Agricultural land use.
- ONTARIO REGULATION 406/19 TABLE 2.1: Full Depth Excess Soil Quality Standards Residential/Parkland/Institutional [RPI], Industrial/Commercial/Community [ICC], as well as Agricultural land use in a potable groundwater condition.
- ONTARIO REGULATION 406/19 TABLE 3.1: Full Depth Excess Soil Quality Standards Residential/Parkland/Institutional [RPI] and Industrial/Commercial/Community [ICC] land use in a non-potable groundwater condition.

The results of this laboratory testing are presented in the attached AGAT Certificate of Analysis [AGAT Work Order Numbers 23H033859 and 24H122934].

Based on SOIL-MAT ENGINEERS' field observations and the laboratory analytical test results from AGAT, SOIL-MAT ENGINEERS offer the following comments:

- 1. The submitted samples were reported to meet Table 1 [AG] Standards for the parameters tested, with the exception of Electrical Conductivity [EC] in sampling locations 'TP1' to 'TP9' and 'TP103', Barium in samples 'TP1-S4' and 'TP5-S1', Nickel in samples 'TP1-S4', 'TP3-S3', 'TP5-S1', 'TP6-S1', 'TP8-S1', 'TP101', 'TP102' and 'TP103', and Cobalt in samples 'TP1-S1', 'TP3-S3', 'TP5-S1', 'TP8-S2', 'TP11' and 'TP103'.
- 2. The submitted samples were reported to meet Table 1 [RPI/ICC] Standards for the parameters tested, with the exception of Electrical Conductivity [EC] in sampling locations 'TP1' to 'TP9' and 'TP103', and Barium in samples 'TP1-S4' and 'TP5-S1'. However, considering the Statistical Method as outlined in Regulation 406/19, the concentrations of Barium in these samples is below the applicable Ceiling Value for Table 1 [RPI/ICC], and given the number of samples meeting the Standard, the

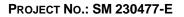
- sampled material is considered to meet the Table 1 [RPI/ICC] Standards for the parameters tested.
- 3. The submitted samples were reported to meet Table 2.1 [AG] Standards for the parameters tested, with the exception of Electrical Conductivity [EC] in sampling locations 'TP1', 'TP3' to 'TP8' and 'TP103'.
- 4. The submitted samples were reported to meet Table 2.1 and Table 3.1 Residential/Parkland/Institutional [RPI] Standards for the parameters tested, with the exception of Electrical Conductivity [EC] in sampling locations 'TP1', 'TP3' to 'TP8' and 'TP103'.
- 5. The submitted samples were reported to meet Table 2.1 and Table 3.1 [ICC] Standards for the parameters tested with the exception of Electrical Conductivity [EC] in samples 'TP3-S2', 'TP3-S3', 'TP5-S1', 'TP5-S2', 'TP5-S3', and 'TP7-S3'.
- 6. The selected samples subject to SPLP Metals testing were reported to be within Table 1 Standards.
- 7. There was no obvious notable visual or olfactory evidence of a potential petroleum hydrocarbon impact observed at the time of the sampling events;

SUMMARY OF EXCEEDANCES

Sample	Table	e 1		Table 2.1		Table	e 3.1
	RPI/ICC	AG	RPI	ICC	AG	RPI	ICC
TP1-S1	EC	EC	EC	✓	EC	EC	✓
TP1-S2	EC	EC	✓	✓		✓	✓
TP1-S3	EC	EC	✓	✓		✓	✓
TP1-S4	EC Barium	EC Barium Cobalt Nickel	EC	~	EC	EC	√
TP2-S1	✓		✓	✓	✓	✓	✓
TP2-S2	EC	EC	✓	✓	✓	✓	✓
TP2-S3	EC	EC	✓	✓	✓	✓	✓
TP2-S4	EC	✓	✓	✓	✓	✓	✓
TP3-S1	EC	EC	EC	✓	EC	EC	✓
TP3-S2	EC	EC	EC	EC	EC	EC	EC
TP3-S3	EC	EC Cobalt Nickel	EC	EC	EC	EC	EC
TP4-S1	EC	EC	EC	✓	EC	EC	✓
TP4-S2	EC	EC	EC	✓	EC	EC	✓
TP4-S3	EC	EC	EC	✓	EC	EC	✓
TP5-S1	EC Barium	EC Barium Cobalt Nickel	EC	EC	EC	EC	EC
TP5-S2	EC	EC	EC	EC	EC	EC	EC
TP5-S3	EC	EC	EC	EC	EC	EC	EC
TP6-S1	EC	EC Nickel	√	√	√	√	√
TP6-S2	EC	EC	EC	✓	EC	EC	✓
TP6-S3	EC	EC	EC	✓	EC	EC	✓
TP7-S1	EC	EC	✓	✓	✓	✓	✓

Sample	Table	e 1		Table 2.1	Table 3.1		
	RPI/ICC	AG	RPI	ICC	AG	RPI	ICC
TP7-S2	EC	EC	EC	✓	EC	EC	✓
TP7-S3	EC	EC	EC	EC	EC	EC	EC
TP8-S1	EC	EC Nickel	EC	√	EC	EC	√
TP8-S2	EC	EC Cobalt	EC	√	EC	EC	√
TP8-S3	EC	EC	EC	✓	EC	EC	✓
TP9-S1	✓	✓	✓	✓	✓	✓	✓
TP9-S2	✓	✓	✓	✓	✓	✓	✓
TP9-S3	✓	EC	✓	✓	✓	✓	✓
TP10	✓	✓	✓	✓	✓	✓	✓
TP11	✓	Cobalt	✓	✓	✓	✓	✓
TP12	✓	✓	✓	✓	✓	✓	✓
TP13	✓	✓	✓	✓	✓	✓	✓
TP14	✓	✓	✓	✓	✓	✓	✓
TP15	✓	✓	✓	✓	✓	✓	✓
TP16	✓	✓	✓	✓	✓	✓	✓
TP17	✓	✓	✓	✓	✓	✓	✓
TP18	✓	✓	✓	✓	✓	✓	✓
TP19	✓	✓	✓	✓	✓	✓	✓
TP20	✓	✓	✓	✓	✓	✓	✓
TP101	✓	Nickel	✓	✓	✓	✓	✓
TP102	✓	Nickel	✓	✓	✓	✓	✓
TP103	EC	Nickel, Cobalt, EC	EC	√	EC	EC	√

Notes:

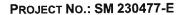

EC = Electrical Conductivity

✓ = Denotes meeting the Standards of listed Table for the parameters tested.

ENVIRONMENTAL CONSIDERATIONS FOR SOIL REUSE

Given the results of the laboratory analytical testing, the following disposal/re-use options are available under Ontario Regulation 406/19:

- As the tested material has been shown to meet the Table 1 [RPI/ICC], Table 2.1 and 3.1 [RPI and ICC] Standards, with the exception of Electrical Conductivity [EC] only, surplus material may reasonably be accepted at an off-site RPI or ICC property in a potable or non-potable groundwater condition, including that subject to a Record of Site Condition or MECP Certificate of Authorisation, subject to approval of the receiving property owner/Qualified Person [QP].
- As the tested material has been shown to exceed the Table 1 [AG] Standards for Electrical Conductivity [EC], Barium, Nickel, and Cobalt, surplus material may not be accepted at an off-site agricultural property required to meet Table 1 [AG] standards. The need to meet such standard should be confirmed.
 - Material from areas of the site shown to be within the Table 1 [Ag] Standards may be reasonable accepted for reuse on a site subject to the Table 1 [Ag] Standards.
- 3. As the tested material has been shown to exceed the Table 2.1 [AG] Standards for EC only, it may be reasonable to accept surplus material at an off-site agricultural property in a potable groundwater condition, subject to approval of the receiving property owner/QP, and the conditions outlined in Item 5 below.



- Material from areas of the site shown to be within the Table 2.1 [Ag] Standards may be reasonable accepted for reuse on a site subject to the Table 2.1 [Ag] Standards.
- 4. Surplus soil may be reused on the subject site.
- 5. It is noted that elevated levels of EC and SAR are typically associated with the effects of the application of de-icing salt on parking areas and roadways. These are essentially aesthetic parameters that are non-hazardous to human or animal health, rather they tend to render the soil environment less supportive to plant growth and more corrosive to buried pipe. As per Ontario Regulation 406/19 [as amended], excess soil quality standards for EC and SAR in soil resulting solely from the use of a substance for the safety of vehicular or pedestrian traffic applied under conditions of snow or ice or both, are deemed to be met if the following criteria are met:
 - "i. The excess soil is finally placed at one of the following locations:
 - where it is reasonable to expect that the soil will be affected by the same chemicals as a result of continued application of a substance for the safety of vehicular or pedestrian traffic under conditions of snow or ice;
 - at an industrial or commercial property use and to which non-potable standards would be applicable;
 - at least 1.5 metres below the surface of the soil
 - ii. The excess soil is not finally placed at one of the following locations:
 - within 30 metres of a waterbody; at an industrial or commercial property use and to which non-potable standards would be applicable;
 - within 100 metres of a potable water well or area with an intended property use that may require a potable water well;
 - a location that will be used for growing crops or pasturing livestock unless the excess soil is placed 1.5 metres or greater below the soil surface."
- 6. The soil samples secured for laboratory analytical testing are believed to be representative of the soil conditions at the sample locations only. If any significant changes are noted, i.e., odours, staining etc., SOIL-MAT ENGINEERS & CONSULTANTS LTD. should be contacted to reassess the environmental characteristics of the soil.
- 7. Depending on the volume of surplus soil to be handled, as well as the requirements of the receiving property, additional testing may be required.

GEOTECHNICAL CONSIDERATIONS FOR SOIL REUSE

As noted above, the sampled material consisted of brown silty clay/clayey silt. This material is generally considered suitable for use as engineered fill, provided it is free of any significant inclusions of organics or debris, etc., and subject to appropriate moisture conditioning and proper compactive effort based on the specific project requirements where the material is to be reused.

GENERAL COMMENTS

The material in this report reflects Soil-Mat Engineers' best judgement in light of the information available at the time of preparation. The subsurface descriptions and test pit information are intended to describe conditions at the test pit locations only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Soil-Mat Engineers accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

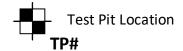
We trust this is satisfactory for your purposes. Please feel free to contact our Office if you have any questions, or we may be of further service to you. Yours very truly,

SOIL-MAT ENGINEERS & CONSULTANTS LTD.

Alex Lajkosz, B.Sc. Environmental Technician


Kyle Richardson, P.Eng., QP_{ESA} Project Engineer S. K. RICHARDSON 190179716

lan Shaw, P.Eng., QP_{ESA} Senior Engineer


Enclosures: Drawing No. 1, Sample Location Plan [1 page]

AGAT Certificate of Analysis 23H033859 [28 pages] AGAT Certificate of Analysis 24H122934 [12 pages]

Distribution: Rankin Construction Inc. [1, plus pdf]

LEGEND

NOTES

- 1. This drawing should be read in conjunction with Soil-Mat Engineers & Consultants Ltd. Report SM 230477-E
- 2. Test pit locations are approximate.

SOIL-MAT

ENGINEERS & CONSULTANTS LTD.

Test Pit Location Plan Proposed South Niagara Hospital Montrose Road and Biggar Road Niagara Falls, Ontario

Test Pit Location Plan

Project No. SM 230477-E

Date: February 2024

Drawn: AL

Drawing No. 1

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT 401 GRAYS ROAD HAMILTON, ON L8E 2Z3

(905) 318-7440

ATTENTION TO: Peter Markesic

PROJECT: 230477

AGAT WORK ORDER: 23H033859

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Jun 15, 2023

PAGES (INCLUDING COVER): 28 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 28

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

SAMPLING SITE: South Niagara Hospital

Certificate of Analysis

AGAT WORK ORDER: 23H033859

PROJECT: 230477

ATTENTION TO: Peter Markesic

SAMPLED BY:SD

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2023-06-09								[DATE REPORTE	ED: 2023-06-15	
			PLE TYPE:	TP1-S1 Soil	TP1-S2 Soil	TP1-S3 Soil	TP1-S4 Soil	TP2-S1 Soil	TP2-S3 Soil	TP2-S4 Soil	TP3-S1 Soil
Parameter	Unit	G/S	SAMPLED: RDL	2023-06-08 5053925	2023-06-08 5054040	2023-06-08 5054162	2023-06-08 5054163	2023-06-08 5054164	2023-06-08 5054165	2023-06-08 5054166	2023-06-08 5054167
Antimony	µg/g	1.3	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	μg/g	18	1	7	6	7	7	6	6	6	6
Barium	μg/g	220	2.0	138	100	128	263	164	118	153	87.0
Beryllium	μg/g	2.5	0.5	0.8	0.6	0.7	0.7	0.8	0.7	0.7	0.6
Boron	μg/g	36	5	10	9	10	15	14	13	14	9
Boron (Hot Water Soluble)	μg/g	NA	0.10	0.11	0.17	0.20	0.37	<0.10	0.23	0.25	<0.10
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	μg/g	70	5	32	26	28	33	35	32	31	26
Cobalt	μg/g	21	0.8	14.3	14.2	15.7	19.1	14.3	15.8	15.1	11.3
Copper	μg/g	92	1.0	25.5	24.7	26.0	25.1	25.3	24.6	24.9	23.7
Lead	μg/g	120	1	11	9	9	11	12	10	9	8
Molybdenum	μg/g	2	0.5	0.7	0.8	0.7	0.9	<0.5	0.7	0.7	0.5
Nickel	μg/g	82	1	29	29	31	38	32	31	31	25
Selenium	μg/g	1.5	8.0	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Silver	μg/g	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	μg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium	μg/g	2.5	0.50	1.00	1.04	1.04	1.06	0.81	1.00	0.98	0.90
Vanadium	μg/g	86	2.0	47.9	36.4	38.9	43.4	49.3	45.5	43.3	38.4
Zinc	μg/g	290	5	72	68	70	83	75	70	72	59
Chromium, Hexavalent	μg/g	0.66	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide, WAD	μg/g	0.051	0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Mercury	μg/g	0.27	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity (2:1)	mS/cm	0.57	0.005	1.18	0.661	0.693	0.941	0.458	0.667	0.688	0.778
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	2.4	N/A	0.573	0.575	0.599	0.650	0.626	0.751	0.771	0.671
pH, 2:1 CaCl2 Extraction	pH Units		NA	6.90	7.08	7.12	7.16	7.15	7.14	7.15	7.22

Certificate of Analysis

AGAT WORK ORDER: 23H033859

PROJECT: 230477

ATTENTION TO: Peter Markesic

SAMPLED BY:SD

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:South Niagara Hospital

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2023-06-09								Γ	DATE REPORTE	ED: 2023-06-15	
		SAMPLE DES	CRIPTION:	TP3-S2	TP3-S3	TP4-S1	TP4-S2	TP4-S3	TP5-S1	TP5-S2	TP5-S3
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE	SAMPLED:	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08
Parameter	Unit	G/S	RDL	5054168	5054169	5054170	5054186	5054187	5054188	5054189	5054190
Antimony	μg/g	1.3	8.0	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	μg/g	18	1	7	6	6	6	7	6	7	6
Barium	μg/g	220	2.0	117	159	99.8	112	125	231	101	148
Beryllium	μg/g	2.5	0.5	0.7	0.7	0.7	0.6	0.6	1.1	0.7	0.7
Boron	μg/g	36	5	11	16	8	11	11	15	11	14
Boron (Hot Water Soluble)	μg/g	NA	0.10	0.25	0.38	0.13	0.20	0.23	0.10	0.15	0.35
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	μg/g	70	5	29	32	27	28	26	40	30	31
Cobalt	μg/g	21	8.0	13.9	19.4	12.8	14.1	14.8	20.4	14.2	15.3
Copper	μg/g	92	1.0	25.1	25.1	22.4	25.3	27.0	26.6	27.8	26.1
Lead	μg/g	120	1	10	11	12	9	9	15	10	10
Molybdenum	μg/g	2	0.5	0.6	0.9	0.6	0.8	0.7	0.6	0.6	0.7
Nickel	μg/g	82	1	29	38	28	30	29	39	30	32
Selenium	μg/g	1.5	8.0	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Silver	μg/g	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	μg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium	μg/g	2.5	0.50	1.09	1.02	0.93	0.99	0.95	1.37	1.17	1.06
Vanadium	μg/g	86	2.0	41.6	45.7	39.6	40.5	38.6	58.7	45.0	44.8
Zinc	μg/g	290	5	68	80	68	67	66	80	66	74
Chromium, Hexavalent	μg/g	0.66	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide, WAD	μg/g	0.051	0.040	<0.040	<0.040	< 0.040	<0.040	< 0.040	<0.040	<0.040	< 0.040
Mercury	μg/g	0.27	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity (2:1)	mS/cm	0.57	0.005	2.70	1.47	0.770	1.16	0.995	2.86	1.43	1.41
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	2.4	N/A	0.555	0.849	0.496	0.795	0.751	0.747	0.637	0.760
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.16	7.16	7.20	7.19	7.18	7.12	7.23	7.23

SAMPLING SITE: South Niagara Hospital

Certificate of Analysis

AGAT WORK ORDER: 23H033859

PROJECT: 230477

ATTENTION TO: Peter Markesic

SAMPLED BY:SD

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O Reg. 153(511) - Metals & Inorganics (Soil)

			<u> </u>	11eg. 155(ori) - iviciai.	s & inorgan	(3011)				
DATE RECEIVED: 2023-06-09								Γ	DATE REPORTE	ED: 2023-06-15	
		DATES	PLE TYPE: SAMPLED:	TP6-S1 Soil 2023-06-08	TP6-S2 Soil 2023-06-08	TP6-S3 Soil 2023-06-08	TP7-S1 Soil 2023-06-08	TP7-S2 Soil 2023-06-08	TP7-S3 Soil 2023-06-08	TP8-S1 Soil 2023-06-08	TP8-S2 Soil 2023-06-08
Parameter	Unit	G/S	RDL	5054191	5054192	5054193	5054194	5054195	5054196	5054217	5054218
Antimony	µg/g	1.3	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	μg/g	18	1	6	6	7	6	7	5	6	6
Barium	µg/g	220	2.0	208	134	124	142	145	196	204	173
Beryllium	μg/g	2.5	0.5	0.9	0.9	0.6	1.0	0.7	0.9	0.8	0.8
Boron	μg/g	36	5	16	14	10	9	11	17	14	17
Boron (Hot Water Soluble)	μg/g	NA	0.10	<0.10	<0.10	0.22	0.16	0.11	0.23	<0.10	0.23
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	μg/g	70	5	39	33	27	40	29	33	39	32
Cobalt	μg/g	21	8.0	17.8	16.6	13.9	18.3	15.1	17.1	17.5	19.1
Copper	μg/g	92	1.0	25.6	23.9	25.4	18.1	25.9	24.1	26.3	26.7
Lead	μg/g	120	1	13	12	9	19	10	10	13	11
Molybdenum	µg/g	2	0.5	0.5	0.7	0.7	1.0	0.7	0.8	0.7	0.9
Nickel	µg/g	82	1	38	33	29	33	31	36	39	37
Selenium	μg/g	1.5	8.0	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Silver	μg/g	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	μg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium	μg/g	2.5	0.50	1.11	1.01	0.96	0.94	1.12	0.99	1.16	1.06
Vanadium	μg/g	86	2.0	56.5	47.7	40.1	59.3	42.8	46.3	53.3	45.5
Zinc	μg/g	290	5	79	76	65	100	68	79	81	78
Chromium, Hexavalent	μg/g	0.66	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide, WAD	μg/g	0.051	0.040	< 0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	< 0.040
Mercury	μg/g	0.27	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity (2:1)	mS/cm	0.57	0.005	0.581	0.895	1.02	0.636	1.32	1.44	1.25	1.01
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	2.4	N/A	0.792	0.773	0.841	0.261	0.719	1.00	0.857	0.813
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.24	7.24	6.91	6.15	6.69	6.77	6.84	6.99

Certificate of Analysis

AGAT WORK ORDER: 23H033859

PROJECT: 230477

ATTENTION TO: Peter Markesic

SAMPLED BY:SD

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:South Niagara Hospital

			Ο.	Reg. 153(511) - Metal	s & Inorgan	ics (Soil)				
DATE RECEIVED: 2023-06-09								Ι	DATE REPORTE	ED: 2023-06-15	
	9	SAMPLE DES	CRIPTION:	TP8-S3	TP9-S1	TP9-S2	TP9-S3	TP10	TP11	TP12	TP13
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
			SAMPLED:	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08
Parameter	Unit	G/S	RDL	5054219	5054220	5054221	5054222	5054223	5054224	5054225	5054226
Antimony	μg/g	1.3	8.0	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	μg/g	18	1	6	5	6	5	6	6	6	6
Barium	μg/g	220	2.0	141	164	144	156	134	159	129	136
Beryllium	μg/g	2.5	0.5	0.6	0.9	0.7	0.7	0.9	1.0	0.8	0.9
Boron	μg/g	36	5	12	13	13	16	7	7	7	9
Boron (Hot Water Soluble)	μg/g	NA	0.10	0.21	<0.10	<0.10	0.11	0.23	0.15	0.23	0.36
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	μg/g	70	5	29	36	32	33	39	45	36	40
Cobalt	μg/g	21	8.0	14.7	13.8	14.9	15.9	16.4	20.4	17.8	16.1
Copper	μg/g	92	1.0	27.3	22.8	25.8	24.6	16.6	18.6	16.9	19.7
Lead	μg/g	120	1	10	13	11	11	23	19	23	24
Molybdenum	μg/g	2	0.5	0.7	0.5	0.6	0.6	1.2	1.0	1.3	1.0
Nickel	μg/g	82	1	30	32	33	32	31	33	29	35
Selenium	μg/g	1.5	8.0	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Silver	μg/g	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	μg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium	μg/g	2.5	0.50	1.04	0.75	0.90	0.95	1.20	1.39	1.04	0.99
Vanadium	μg/g	86	2.0	41.7	52.5	45.5	48.3	57.2	63.0	58.2	58.5
Zinc	μg/g	290	5	64	72	69	73	91	89	93	93
Chromium, Hexavalent	μg/g	0.66	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide, WAD	μg/g	0.051	0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Mercury	μg/g	0.27	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity (2:1)	mS/cm	0.57	0.005	1.18	0.207	0.203	0.499	0.110	0.166	0.059	0.084
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	2.4	N/A	0.867	0.400	0.477	0.477	0.191	0.557	0.235	0.210
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.04	7.04	7.11	7.18	5.10	5.74	4.57	5.89

SAMPLING SITE: South Niagara Hospital

Certificate of Analysis

AGAT WORK ORDER: 23H033859

PROJECT: 230477

ATTENTION TO: Peter Markesic

SAMPLED BY:SD

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2023-06-09								[DATE REPORT	ED: 2023-06-15	
			CRIPTION: PLE TYPE: SAMPLED:	TP14 Soil 2023-06-08	TP15 Soil 2023-06-08	TP16 Soil 2023-06-08	TP17 Soil 2023-06-08	TP18 Soil 2023-06-08	TP19 Soil 2023-06-08	TP20 Soil 2023-06-08	TP2-S2 Soil 2023-06-08
Parameter	Unit	G/S	RDL	5054227	5054238	5054239	5054240	5054241	5054242	5054243	5054244
Antimony	μg/g	1.3	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	μg/g	18	1	6	5	4	6	4	5	5	6
Barium	μg/g	220	2.0	120	95.8	85.6	142	56.4	76.3	85.1	130
Beryllium	μg/g	2.5	0.5	0.9	0.6	0.7	0.8	<0.5	0.6	0.7	<0.5
Boron	μg/g	36	5	8	7	7	13	<5	<5	5	9
Boron (Hot Water Soluble)	μg/g	NA	0.10	0.26	0.30	0.18	0.28	<0.10	0.24	0.18	0.14
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	μg/g	70	5	39	32	31	38	25	25	30	27
Cobalt	μg/g	21	8.0	17.3	11.2	11.9	15.3	9.3	11.9	12.3	14.1
Copper	μg/g	92	1.0	18.0	11.8	14.8	23.4	10.0	13.0	15.6	24.6
Lead	μg/g	120	1	22	22	13	22	14	18	17	9
Molybdenum	μg/g	2	0.5	1.1	1.0	0.6	0.8	0.8	0.9	0.9	0.6
Nickel	μg/g	82	1	32	25	23	34	20	23	26	29
Selenium	μg/g	1.5	8.0	0.9	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Silver	μg/g	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	μg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium	μg/g	2.5	0.50	0.95	0.77	0.66	0.83	0.53	0.74	0.72	1.04
Vanadium	μg/g	86	2.0	56.8	48.0	48.0	56.0	42.8	38.5	46.5	39.6
Zinc	μg/g	290	5	97	84	68	91	54	66	70	63
Chromium, Hexavalent	μg/g	0.66	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide, WAD	μg/g	0.051	0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Mercury	μg/g	0.27	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity (2:1)	mS/cm	0.57	0.005	0.095	0.071	0.046	0.154	0.103	0.056	0.050	0.615
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	2.4	N/A	0.346	0.284	0.216	0.106	0.090	0.244	0.227	0.552
pH, 2:1 CaCl2 Extraction	pH Units		NA	5.02	5.43	5.69	6.53	6.62	5.04	4.87	6.48

AGAT WORK ORDER: 23H033859

PROJECT: 230477

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

SAMPLING SITE: South Niagara Hospital

ATTENTION TO: Peter Markesic SAMPLED BY:SD

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2023-06-09 DATE REPORTED: 2023-06-15

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 406/19 TABLE 1: Full Depth Background Site Condition - RPIC

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5053925-5054244 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

narameter

Analysis performed at AGAT Toronto (unless marked by *)

TO CHEMIST OF CHEMIST

AGAT WORK ORDER: 23H033859

PROJECT: 230477

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

ATTENTION TO: Peter Markesic

SAMPLED BY:SD

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

SAMPLING SITE: South Niagara Hospital

O. Reg. 406/19 SPLP Metals

				0.11	og. 100/10 v	oi Li Wictai	o .				
DATE RECEIVED: 2023-06-09								[DATE REPORT	ED: 2023-06-15	
		SAMPLE DES	CRIPTION:	TP1-S1	TP5-S2	TP7-S2	TP12	TP19	TP20	TP2-S2	
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
		DATE:	SAMPLED:	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	
Parameter	Unit	G/S	RDL	5053925	5054189	5054195	5054225	5054242	5054243	5054244	
Antimony Leachate	μg/L	-	0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	
Arsenic Leachate	μg/L	-	5	<5	<5	<5	<5	<5	<5	<5	
Barium Leachate	μg/L	-	100	<100	<100	<100	<100	<100	<100	<100	
Beryllium Leachate	μg/L	-	8.0	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	
Boron Leachate	μg/L	-	500	<500	<500	<500	<500	<500	<500	<500	
Cadmium Leachate	μg/L	-	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Chromium Leachate	μg/L	-	10	<10	<10	<10	<10	<10	<10	<10	
Cobalt Leachate	μg/L	-	0.3	<0.3	<0.3	<0.3	<0.3	< 0.3	0.4	<0.3	
Copper Leachate	μg/L	-	6.9	<6.9	<6.9	<6.9	<6.9	<6.9	<6.9	<6.9	
Lead Leachate	μg/L	-	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Molybdenum Leachate	μg/L	23	1.5	<1.5	<1.5	2.4	<1.5	<1.5	<1.5	<1.5	
Nickel Leachate	μg/L	-	10	<10	<10	<10	<10	<10	<10	<10	
Selenium Leachate	μg/L	-	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
Silver Leachate	μg/L	0.3	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Thallium Leachate	μg/L	2	0.5	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Uranium Leachate	μg/L	-	2	<2	<2	<2	<2	<2	<2	<2	
Vanadium Leachate	μg/L	-	0.6	1.3	1.1	1.1	1.8	3.4	3.9	1.3	
Zinc Leachate	μg/L	-	20	<20	<20	<20	<20	<20	<20	<20	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 406/19 TABLE 1: Full Depth Background Site Condition - RPIC

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5053925-5054244 Leachate for metal testing was prepared in accordance with Ontario MECP Method E9003, which has been modified from SW846-1312 by Ontario MECP. MECP has recommended that Method E9003 be used for leachate testing of soil samples under O'Reg 406/19 by MECP.

Analysis performed at AGAT Toronto (unless marked by *)

BINDENICAL PRODUCTION OF THE P

AGAT WORK ORDER: 23H033859

PROJECT: 230477

on Manufaction

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

ATTENTION TO: Peter Markesic SAMPLED BY:SD

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT SAMPLING SITE: South Niagara Hospital

O. Reg. 153(511) - PHCs F1 - F4 (Soil)
ATE RECEIVED: 2023-06-09

DATE RECEIVED: 2023-06-09								[DATE REPORTI	ED: 2023-06-15	
	S	AMPLE DESCR	RIPTION:	TP1-S1	TP1-S2	TP1-S3	TP1-S4	TP2-S1	TP2-S3	TP2-S4	TP3-S1
		SAMPL	E TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE SA	MPLED:	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08
Parameter	Unit	G/S	RDL	5053925	5054040	5054162	5054163	5054164	5054165	5054166	5054167
Benzene	μg/g	0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Toluene	μg/g	0.2	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ethylbenzene	μg/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
m & p-Xylene	μg/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
o-Xylene	μg/g		0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Xylenes (Total)	μg/g	0.05	0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
F1 (C6 - C10)	μg/g		5	<5	<5	<5	<5	<5	<5	<5	<5
F1 (C6 to C10) minus BTEX	μg/g	25	5	<5	<5	<5	<5	<5	<5	<5	<5
F2 (C10 to C16)	μg/g	10	10	<10	<10	<10	<10	<10	<10	<10	<10
F3 (C16 to C34)	μg/g	240	50	<50	<50	<50	<50	<50	<50	<50	<50
F4 (C34 to C50)	μg/g	120	50	<50	<50	<50	<50	<50	<50	<50	<50
Gravimetric Heavy Hydrocarbons	μg/g		50	NA	NA	NA	NA	NA	NA	NA	NA
Moisture Content	%		0.1	16.1	18.3	18.9	18.8	14.6	21.1	20.0	21.1
Surrogate	Unit	Acceptable	Limits								
Toluene-d8	% Recovery	60-140)	92.0	87.0	85.2	88.2	86.2	81.8	87.5	83.8
Terphenyl	%	60-140)	106	91	85	100	65	90	87	97

AGAT WORK ORDER: 23H033859

PROJECT: 230477

ATTENTION TO: Peter Markesic

SAMPLED BY:SD

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT SAMPLING SITE:South Niagara Hospital

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

				3	(` '				
DATE RECEIVED: 2023-06-09								[DATE REPORT	ED: 2023-06-15	
	S	AMPLE DESC	CRIPTION:	TP3-S2	TP3-S3	TP4-S1	TP4-S2	TP4-S3	TP5-S1	TP5-S2	TP5-S3
		SAME	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE S	SAMPLED:	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08
Parameter	Unit	G/S	RDL	5054168	5054169	5054170	5054186	5054187	5054188	5054189	5054190
Benzene	μg/g	0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Toluene	μg/g	0.2	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ethylbenzene	μg/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
m & p-Xylene	μg/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
o-Xylene	μg/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Xylenes (Total)	μg/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
F1 (C6 - C10)	μg/g		5	<5	<5	<5	<5	<5	<5	<5	<5
F1 (C6 to C10) minus BTEX	μg/g	25	5	<5	<5	<5	<5	<5	<5	<5	<5
F2 (C10 to C16)	μg/g	10	10	<10	<10	<10	<10	<10	<10	<10	<10
F3 (C16 to C34)	μg/g	240	50	<50	<50	<50	<50	<50	<50	<50	<50
F4 (C34 to C50)	μg/g	120	50	<50	<50	<50	<50	<50	<50	<50	<50
Gravimetric Heavy Hydrocarbons	μg/g		50	NA	NA	NA	NA	NA	NA	NA	NA
Moisture Content	%		0.1	16.8	20.0	22.2	21.3	19.2	18.8	16.4	21.0
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	% Recovery	60-1	40	80.5	83.2	83.0	78.5	74.8	112	80.2	78.5
Terphenyl	%	60-1	140	90	96	101	84	66	65	70	66

AGAT WORK ORDER: 23H033859

PROJECT: 230477

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

ATTENTION TO: Peter Markesic

SAMPLED BY:SD

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

SAMPLING SITE: South Niagara Hospital

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

					00(011) 11		,				
DATE RECEIVED: 2023-06-09								[DATE REPORTE	ED: 2023-06-15	
	S	AMPLE DESC	CRIPTION:	TP6-S1	TP6-S2	TP6-S3	TP7-S1	TP7-S2	TP7-S3	TP8-S1	TP8-S2
		SAME	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE S	SAMPLED:	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08
Parameter	Unit	G/S	RDL	5054191	5054192	5054193	5054194	5054195	5054196	5054217	5054218
Benzene	μg/g	0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Toluene	μg/g	0.2	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ethylbenzene	μg/g	0.05	0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
m & p-Xylene	μg/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
o-Xylene	μg/g		0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Xylenes (Total)	μg/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
F1 (C6 - C10)	μg/g		5	<5	<5	<5	<5	<5	<5	<5	<5
F1 (C6 to C10) minus BTEX	μg/g	25	5	<5	<5	<5	<5	<5	<5	<5	<5
F2 (C10 to C16)	μg/g	10	10	<10	<10	<10	<10	<10	<10	<10	<10
F3 (C16 to C34)	μg/g	240	50	<50	<50	<50	<50	<50	<50	<50	<50
F4 (C34 to C50)	μg/g	120	50	<50	<50	<50	<50	<50	<50	<50	<50
Gravimetric Heavy Hydrocarbons	μg/g		50	NA	NA	NA	NA	NA	NA	NA	NA
Moisture Content	%		0.1	18.7	17.0	18.8	16.0	18.3	19.2	19.1	20.5
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	% Recovery	60-1	40	77.8	80.5	80.2	77.2	110	94.2	102	108
Terphenyl	%	60-1	40	85	60	71	75	84	70	67	67

AGAT WORK ORDER: 23H033859

PROJECT: 230477

CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

ATTENTION TO: Peter Markesic

SAMPLED BY:SD

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT SAMPLING SITE:South Niagara Hospital

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2023-06-09								[DATE REPORTE	ED: 2023-06-15	
	S	AMPLE DES	CRIPTION:	TP8-S3	TP9-S1	TP9-S2	TP9-S3	TP10	TP11	TP12	TP13
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE	SAMPLED:	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08
Parameter	Unit	G/S	RDL	5054219	5054220	5054221	5054222	5054223	5054224	5054225	5054226
Benzene	μg/g	0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Toluene	μg/g	0.2	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ethylbenzene	μg/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
m & p-Xylene	μg/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
o-Xylene	μg/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Xylenes (Total)	μg/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
F1 (C6 - C10)	μg/g		5	<5	<5	<5	<5	<5	<5	<5	<5
F1 (C6 to C10) minus BTEX	μg/g	25	5	<5	<5	<5	<5	<5	<5	<5	<5
F2 (C10 to C16)	μg/g	10	10	<10	<10	<10	<10	<10	<10	<10	<10
F3 (C16 to C34)	μg/g	240	50	<50	<50	<50	<50	<50	<50	<50	<50
F4 (C34 to C50)	μg/g	120	50	<50	<50	<50	<50	<50	<50	<50	<50
Gravimetric Heavy Hydrocarbons	μg/g		50	NA	NA	NA	NA	NA	NA	NA	NA
Moisture Content	%		0.1	22.4	18.2	17.6	22.3	13.1	15.8	13.1	13.1
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	% Recovery	60-	140	109	102	84.0	99.2	86.0	95.0	89.2	77.5
Terphenyl	%	60-	140	84	65	77	77	89	82	85	80

AGAT WORK ORDER: 23H033859

PROJECT: 230477

ATTENTION TO: Peter Markesic

SAMPLED BY:SD

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT SAMPLING SITE:South Niagara Hospital

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

				O. IXeg. 1	33(311) - F1	103 1 1 - 1 4	(3011)				
DATE RECEIVED: 2023-06-09								[DATE REPORTE	ED: 2023-06-15	
	S	AMPLE DESC	CRIPTION:	TP14	TP15	TP16	TP17	TP18	TP19	TP20	TP2-S2
		SAME	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE S	SAMPLED:	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08	2023-06-08
Parameter	Unit	G/S	RDL	5054227	5054238	5054239	5054240	5054241	5054242	5054243	5054244
Benzene	μg/g	0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02
Toluene	μg/g	0.2	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ethylbenzene	μg/g	0.05	0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05
m & p-Xylene	μg/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
o-Xylene	μg/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Xylenes (Total)	μg/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
F1 (C6 - C10)	μg/g		5	<5	<5	<5	<5	<5	<5	<5	<5
F1 (C6 to C10) minus BTEX	μg/g	25	5	<5	<5	<5	<5	<5	<5	<5	<5
F2 (C10 to C16)	μg/g	10	10	<10	<10	<10	<10	<10	<10	<10	<10
F3 (C16 to C34)	μg/g	240	50	<50	<50	<50	<50	<50	<50	<50	<50
F4 (C34 to C50)	μg/g	120	50	<50	<50	<50	<50	<50	<50	<50	<50
Gravimetric Heavy Hydrocarbons	μg/g		50	NA	NA	NA	NA	NA	NA	NA	NA
Moisture Content	%		0.1	12.7	14.4	12.0	14.1	12.7	9.6	11.6	19.6
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	% Recovery	60-1	40	106	118	115	79.2	107	104	106	106
Terphenyl	%	60-1	40	70	79	87	86	96	84	73	93

AGAT WORK ORDER: 23H033859

PROJECT: 230477

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

SAMPLING SITE: South Niagara Hospital

ATTENTION TO: Peter Markesic SAMPLED BY:SD

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2023-06-09 DATE REPORTED: 2023-06-15

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 406/19 TABLE 1: Full Depth Background Site Condition - RPIC

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5053925-5054244 Results are based on sample dry weight.

The C6-C10 fraction is calculated using Toluene response factor.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Quality Control Data is available upon request.

Analysis performed at AGAT Toronto (unless marked by *)

Exceedance Summary

AGAT WORK ORDER: 23H033859

PROJECT: 230477

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

ATTENTION TO: Peter Markesic

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
5053925	TP1-S1	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	1.18
5054040	TP1-S2	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	0.661
5054162	TP1-S3	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	0.693
5054163	TP1-S4	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Barium	μg/g	220	263
5054163	TP1-S4	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	0.941
5054165	TP2-S3	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	0.667
5054166	TP2-S4	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	0.688
5054167	TP3-S1	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	0.778
5054168	TP3-S2	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	2.70
5054169	TP3-S3	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	1.47
5054170	TP4-S1	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	0.770
5054186	TP4-S2	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	1.16
5054187	TP4-S3	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	0.995
5054188	TP5-S1	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Barium	μg/g	220	231
5054188	TP5-S1	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	2.86
5054189	TP5-S2	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	1.43
5054190	TP5-S3	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	1.41
5054191	TP6-S1	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	0.581
5054192	TP6-S2	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	0.895
5054193	TP6-S3	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	1.02
5054194	TP7-S1	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	0.636
5054195	TP7-S2	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	1.32
5054196	TP7-S3	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	1.44
5054217	TP8-S1	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	1.25
5054218	TP8-S2	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	1.01
5054219	TP8-S3	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	1.18
5054244	TP2-S2	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	0.615

ATTENTION TO: Peter Markesic

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT AGAT WORK ORDER: 23H033859

SAMPLING SITE: South Niggara Hospital SAMPLED BY:SD

SAMPLING SITE: South Niag	MPLING SITE:South Niagara Hospital							SAMP	LED B	Y:SD					
				Soi	l Ana	alysis	3								
RPT Date: Jun 15, 2023				UPLICATE	<u> </u>		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable	Recovery	Lin	ptable	Recovery	Lin	ptable nits
		ld					Value	Lower	Upper			Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inor	rganics (Soil)											•			
Antimony	5053925 50	053925	<0.8	<0.8	NA	< 0.8	135%	70%	130%	102%	80%	120%	104%	70%	130%
Arsenic	5053925 50	053925	7	7	3.9%	< 1	117%	70%	130%	104%	80%	120%	102%	70%	130%
Barium	5053925 50	053925	138	138	0.4%	< 2.0	109%	70%	130%	104%	80%	120%	97%	70%	130%
Beryllium	5053925 50	053925	8.0	8.0	NA	< 0.5	100%	70%	130%	103%	80%	120%	84%	70%	130%
Boron	5053925 50	053925	10	11	NA	< 5	82%	70%	130%	101%	80%	120%	84%	70%	130%
Boron (Hot Water Soluble)	5053925 50	053925	0.11	0.12	NA	< 0.10	87%	60%	140%	101%	70%	130%	106%	60%	140%
Cadmium	5053925 50	053925	<0.5	<0.5	NA	< 0.5	109%	70%	130%	101%	80%	120%	103%	70%	130%
Chromium	5053925 50	053925	32	33	1.6%	< 5	110%	70%	130%	112%	80%	120%	107%	70%	130%
Cobalt	5053925 50	053925	14.3	14.9	4.2%	< 0.8	114%	70%	130%	104%	80%	120%	103%	70%	130%
Copper	5053925 50	053925	25.5	26.3	3.0%	< 1.0	102%	70%	130%	103%	80%	120%	92%	70%	130%
Lead	5053925 50	053925	11	11	2.0%	< 1	109%	70%	130%	110%	80%	120%	106%	70%	130%
Molybdenum	5053925 50	053925	0.7	0.6	NA	< 0.5	115%	70%	130%	108%	80%	120%	106%	70%	130%
Nickel	5053925 50	053925	29	29	0.3%	< 1	106%	70%	130%	102%	80%	120%	95%	70%	130%
Selenium	5053925 50	053925	<0.8	<0.8	NA	< 0.8	96%	70%	130%	105%	80%	120%	101%	70%	130%
Silver	5053925 50	053925	<0.5	<0.5	NA	< 0.5	103%	70%	130%	101%	80%	120%	95%	70%	130%
Thallium	5053925 50	053925	<0.5	<0.5	NA	< 0.5	110%	70%	130%	99%	80%	120%	97%	70%	130%
Uranium	5053925 50	053925	1.00	1.03	NA	< 0.50	118%	70%	130%	104%	80%	120%	110%	70%	130%
Vanadium	5053925 50	053925	47.9	49.5	3.2%	< 2.0	124%	70%	130%	115%	80%	120%	106%	70%	130%
Zinc	5053925 50	053925	72	73	1.8%	< 5	107%	70%	130%	110%	80%	120%	110%	70%	130%
Chromium, Hexavalent	5046838		<0.2	<0.2	NA	< 0.2	106%	70%	130%	94%	80%	120%	81%	70%	130%
Cyanide, WAD	5054193 50	054193	<0.040	<0.040	NA	< 0.040	98%	70%	130%	104%	80%	120%	90%	70%	130%
Mercury	5053925 50	053925	<0.10	<0.10	NA	< 0.10	104%	70%	130%	93%	80%	120%	98%	70%	130%
Electrical Conductivity (2:1)	5053925 50		1.18	1.14	3.1%	< 0.005	84%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	5053925 50		0.573	0.583	1.6%	NA									
pH, 2:1 CaCl2 Extraction	5060261		6.41	6.65	3.7%	NA	102%	80%	120%						

Comments: NA signifies Not Applicable.

PROJECT: 230477

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

O. Reg. 406/19 SPLP Metals														
Antimony Leachate	5056475	<0.6	<0.6	NA	< 0.6	99%	70%	130%	104%	80%	120%	108%	70%	130%
Arsenic Leachate	5056475	<5	<5	NA	< 5	99%	70%	130%	106%	80%	120%	112%	70%	130%
Barium Leachate	5056475	<100	<100	NA	< 100	104%	70%	130%	106%	80%	120%	114%	70%	130%
Beryllium Leachate	5056475	<0.8	<0.8	NA	< 0.8	93%	70%	130%	92%	80%	120%	102%	70%	130%
Boron Leachate	5056475	<500	<500	NA	< 500	99%	70%	130%	101%	80%	120%	107%	70%	130%
Cadmium Leachate	5056475	<0.20	<0.20	NA	< 0.20	100%	70%	130%	106%	80%	120%	112%	70%	130%
Chromium Leachate	5056475	<10	<10	NA	< 10	101%	70%	130%	104%	80%	120%	114%	70%	130%
Cobalt Leachate	5056475	0.3	0.3	NA	< 0.3	103%	70%	130%	109%	80%	120%	116%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 16 of 28

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

AGAT WORK ORDER: 23H033859

PROJECT: 230477

ATTENTION TO: Peter Markesic

SAMPLING SITE: South Niagara Hospital

SAMPLED BY:SD

SAMPLING SITE:South Niag	gara Hospital							SAMP	LED B	Y:SD					
			Soil	Analy	ysis	(Cont	tinue	d)							
RPT Date: Jun 15, 2023			[DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	K SPIKE	МАТ	RIX SP	IKE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 1	eptable mits	Recovery	1 1 1 1	ptable mits
		IU					Value	Lower	Upper		Lower	Upper		Lower	Uppe
Copper Leachate	5056475		<6.9	<6.9	NA	< 6.9	103%	70%	130%	109%	80%	120%	114%	70%	1309
Lead Leachate	5056475		<1.0	<1.0	NA	< 1.0	111%	70%	130%	115%	80%	120%	120%	70%	1309
Molybdenum Leachate	5056475		3.0	2.8	NA	< 1.5	100%	70%	130%	103%	80%	120%	119%	70%	130
Nickel Leachate	5056475		<10	<10	NA	< 10	102%	70%	130%	107%	80%	120%	113%	70%	1309
Selenium Leachate	5056475		<5.0	<5.0	NA	< 5.0	97%	70%	130%	98%	80%	120%	108%	70%	1309
Silver Leachate	5056475		<0.10	<0.10	NA	< 0.10	101%	70%	130%	106%	80%	120%	109%	70%	130
Thallium Leachate	5056475		<0.5	<0.5	NA	< 0.5	103%	70%	130%	101%	80%	120%	103%	70%	1309
Jranium Leachate	5056475		<2	<2	NA	< 2	105%	70%	130%	113%	80%	120%	115%	70%	1309
/anadium Leachate	5056475		1.6	1.5	NA	2.8	107%	70%	130%	107%	80%	120%	117%	70%	1309
inc Leachate	5056475		<20	<20	NA	< 20	106%	70%	130%	110%	80%	120%	113%	70%	1309
Comments: NA signifies Not Applic Duplicate NA: results are under 5X		ll not be	calculated	i.											
D. Reg. 153(511) - Metals & Inor	rganics (Soil)														
Boron (Hot Water Soluble)	5054194 50	54194	0.16	0.15	NA	< 0.10	89%	60%	140%	102%	70%	130%	104%	60%	140
chromium, Hexavalent	5054226 50	54226	<0.2	<0.2	NA	< 0.2	100%	70%	130%	100%	80%	120%	91%	70%	130
Syanide, WAD	5060261		< 0.040	< 0.040	NA	< 0.040	98%	70%	130%	99%	80%	120%	102%	70%	130
lectrical Conductivity (2:1)	5054194 50	54194	0.636	0.624	1.9%	< 0.005	90%	80%	120%						
odium Adsorption Ratio (2:1) Calc.)	5054194 50	54194	0.261	0.260	0.4%	NA									
H, 2:1 CaCl2 Extraction	5054193 50	54193	6.91	7.13	3.2%	NA	100%	80%	120%						
Comments: NA signifies Not Applic oH duplicates QA acceptance crite Duplicate NA: results are under 5X	ria was met relat the RDL and wi				f Analytica	al Protocol	document	t.							
O. Reg. 153(511) - Metals & Inor	. ,	T 40 40	0.04	0.00	NIA	. 0.40	000/	C00/	4.400/	4000/	700/	4000/	000/	000/	1 100
Boron (Hot Water Soluble) pH, 2:1 CaCl2 Extraction	5054242 50		0.24	0.23	NA 0.70/	< 0.10	88%	60%	140% 120%	100%	70%	130%	99%	60%	1409
Comments: NA signifies Not Applic pH duplicates QA acceptance crite puplicate NA: results are under 5X	ria was met relat	tive as s			0.7% f Analytica	NA al Protocol	101% document		12076						
O. Reg. 153(511) - Metals & Inor															
Antimony	5054194 50		<0.8	<0.8	NA	< 0.8	127%		130%	101%		120%	103%	70%	1309
Arsenic	5054194 50	54194	6	6	1.5%	< 1	115%		130%	101%		120%	102%	70%	1309
Barium	5054194 50	54194	142	138	3.2%	< 2.0	111%	70%		105%		120%	106%	70%	130
Beryllium	5054194 50	54194	1.0	0.9	NA	< 0.5	91%	70%	130%	99%	80%	120%	86%	70%	1309
Boron	5054194 50	54194	9	8	NA	< 5	83%	70%	130%	105%	80%	120%	77%	70%	130
Cadmium	5054194 50	54194	<0.5	<0.5	NA	< 0.5	97%	70%	130%	103%	80%	120%	106%	70%	130
Chromium	5054194 50	54194	40	39	1.7%	< 5	115%	70%	130%	117%	80%	120%	114%	70%	1309
Cobalt	5054194 50	54194	18.3	19.2	4.9%	< 0.8	115%	70%	130%	113%	80%	120%	113%	70%	1309
0	5054404 50		40.4	40.4	0.40/	4.0	4000/	700/	4000/	4000/	000/	4000/	40407	700/	4000

AGAT QUALITY ASSURANCE REPORT (V1)

5054194 5054194

18.1

18.1

70% 130% Page 17 of 28

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

0.1%

< 1.0

102% 70% 130%

106%

80% 120% 101%

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

AGAT WORK ORDER: 23H033859

PROJECT: 230477

ATTENTION TO: Peter Markesic

SAMPLING SITE: South Niagara Hospital

SAMPLED BY:SD

			Soil	Analy	/sis	(Con	tinue	d)							
RPT Date: Jun 15, 2023				UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1 1 1 1 1	ptable nits	Recovery	1 1 1 1 1	eptable mits
		ld	·	·			Value	Lower	Upper	ĺ	Lower	Upper		Lower	Upper
Lead	5054194	5054194	19	20	2.1%	< 1	113%	70%	130%	113%	80%	120%	114%	70%	130%
Molybdenum	5054194	5054194	1.0	0.9	NA	< 0.5	110%	70%	130%	105%	80%	120%	109%	70%	130%
Nickel	5054194	5054194	33	32	0.9%	< 1	110%	70%	130%	107%	80%	120%	102%	70%	130%
Selenium	5054194	5054194	<0.8	8.0	NA	< 0.8	96%	70%	130%	96%	80%	120%	98%	70%	130%
Silver	5054194	5054194	<0.5	<0.5	NA	< 0.5	100%	70%	130%	102%	80%	120%	103%	70%	130%
Thallium	5054194	5054194	<0.5	<0.5	NA	< 0.5	118%	70%	130%	101%	80%	120%	102%	70%	130%
Uranium	5054194	5054194	0.94	0.92	NA	< 0.50	125%	70%	130%	109%	80%	120%	116%	70%	130%
Vanadium	5054194	5054194	59.3	57.8	2.6%	< 2.0	115%	70%	130%	118%	80%	120%	113%	70%	130%
Zinc	5054194	5054194	100	99	1.1%	< 5	108%	70%	130%	111%	80%	120%	109%	70%	130%
Mercury	5054194	5054194	<0.10	<0.10	NA	< 0.10	108%	70%	130%	99%	80%	120%	103%	70%	130%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

O. Rea.	153(511)	- Metals	& Inord	anics (Soi	il)
o. rtog.	100(011	, iviolato (~	ainoo (Oo	,

Antimony	5054242 5054242	<0.8	<0.8	NA	< 0.8	134%	70%	130%	102%	80%	120%	101%	70%	130%
Arsenic	5054242 5054242	5	5	9.8%	< 1	117%	70%	130%	105%	80%	120%	104%	70%	130%
Barium	5054242 5054242	76.3	82.8	8.1%	< 2.0	113%	70%	130%	109%	80%	120%	111%	70%	130%
Beryllium	5054242 5054242	0.6	0.7	NA	< 0.5	90%	70%	130%	100%	80%	120%	93%	70%	130%
Boron	5054242 5054242	<5	6	NA	< 5	77%	70%	130%	98%	80%	120%	86%	70%	130%
Cadmium	5054242 5054242	<0.5	<0.5	NA	< 0.5	101%	70%	130%	103%	80%	120%	107%	70%	130%
Chromium	5054242 5054242	25	29	15.6%	< 5	109%	70%	130%	110%	80%	120%	115%	70%	130%
Cobalt	5054242 5054242	11.9	12.8	7.4%	< 0.8	113%	70%	130%	109%	80%	120%	116%	70%	130%
Copper	5054242 5054242	13.0	14.1	8.0%	< 1.0	103%	70%	130%	109%	80%	120%	105%	70%	130%
Lead	5054242 5054242	18	19	6.2%	< 1	110%	70%	130%	118%	80%	120%	111%	70%	130%
Molybdenum	5054242 5054242	0.9	1.0	NA	< 0.5	112%	70%	130%	109%	80%	120%	111%	70%	130%
Nickel	5054242 5054242	23	25	8.4%	< 1	109%	70%	130%	105%	80%	120%	108%	70%	130%
Selenium	5054242 5054242	<0.8	<0.8	NA	< 0.8	102%	70%	130%	101%	80%	120%	99%	70%	130%
Silver	5054242 5054242	<0.5	< 0.5	NA	< 0.5	102%	70%	130%	109%	80%	120%	104%	70%	130%
Thallium	5054242 5054242	<0.5	<0.5	NA	< 0.5	113%	70%	130%	104%	80%	120%	102%	70%	130%
Uranium	5054242 5054242	0.74	0.78	NA	< 0.50	123%	70%	130%	113%	80%	120%	111%	70%	130%
Vanadium	5054242 5054242	38.5	44.8	15.2%	< 2.0	126%	70%	130%	111%	80%	120%	129%	70%	130%
Zinc	5054242 5054242	66	71	6.4%	< 5	108%	70%	130%	113%	80%	120%	114%	70%	130%
Mercury	5054242 5054242	<0.10	<0.10	NA	< 0.10	102%	70%	130%	98%	80%	120%	100%	70%	130%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 18 of 28

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

AGAT WORK ORDER: 23H033859

PROJECT: 230477

ATTENTION TO: Peter Markesic

SAMPLING SITE:South Niagara Hospital SAMPLED BY:SD

			Soil	Anal	ysis	(Con	tinue	d)							
RPT Date: Jun 15, 2023				UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		otable nits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		ld	''	''			Value	Lower	Upper	,	Lower	Upper		Lower	Upper

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT AGAT WORK ORDER: 23H033859 PROJECT: 230477 ATTENTION TO: Peter Markesic

SAMPLING SITE: South Niagara Hospital SAMPLED BY:SD

Sim Enterent in the second in															
			Trac	e Or	ganio	s Ar	nalys	İS							
RPT Date: Jun 15, 2023			С	UPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery		ptable
		lu lu					value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4 (Soil)														
Benzene	5054194	5054194	< 0.02	< 0.02	NA	< 0.02	86%	60%	140%	91%	60%	140%	86%	60%	140%
Toluene	5054194	5054194	< 0.05	< 0.05	NA	< 0.05	90%	60%	140%	97%	60%	140%	88%	60%	140%
Ethylbenzene	5054194	5054194	< 0.05	< 0.05	NA	< 0.05	89%	60%	140%	87%	60%	140%	90%	60%	140%
m & p-Xylene	5054194 5	5054194	< 0.05	< 0.05	NA	< 0.05	97%	60%	140%	97%	60%	140%	99%	60%	140%
o-Xylene	5054194 5	5054194	<0.05	<0.05	NA	< 0.05	88%	60%	140%	89%	60%	140%	92%	60%	140%
F1 (C6 - C10)	5054194	5054194	<5	<5	NA	< 5	91%	60%	140%	100%	60%	140%	89%	60%	140%
F2 (C10 to C16)	5054165	5054165	<10	<10	NA	< 10	112%	60%	140%	108%	60%	140%	125%	60%	140%
F3 (C16 to C34)	5054165	5054165	<50	<50	NA	< 50	120%	60%	140%	113%	60%	140%	105%	60%	140%
F4 (C34 to C50)	5054165	5054165	<50	<50	NA	< 50	115%	60%	140%	127%	60%	140%	132%	60%	140%
Moisture Content	5054169	5054169	20.00	22.92	13.6%	< 0.1									
O. Reg. 153(511) - PHCs F1 - F4 (Soil)														
Benzene	5054244		< 0.02	< 0.02	NA	< 0.02	98%	60%	140%	89%	60%	140%	98%	60%	140%
Toluene	5054244		< 0.05	< 0.05	NA	< 0.05	95%	60%	140%	87%	60%	140%	92%	60%	140%
Ethylbenzene	5054244		< 0.05	< 0.05	NA	< 0.05	92%	60%	140%	94%	60%	140%	108%	60%	140%
m & p-Xylene	5054244		< 0.05	< 0.05	NA	< 0.05	104%	60%	140%	99%	60%	140%	101%	60%	140%
o-Xylene	5054244		< 0.05	< 0.05	NA	< 0.05	90%	60%	140%	97%	60%	140%	94%	60%	140%
F1 (C6 - C10)	5054244		< 5	< 5	NA	< 5	83%	60%	140%	94%	60%	140%	96%	60%	140%
F2 (C10 to C16)	5054220	5054220	<10	<10	NA	< 10	112%	60%	140%	108%	60%	140%	107%	60%	140%
F3 (C16 to C34)	5054220 5	5054220	<50	<50	NA	< 50	120%	60%	140%	113%	60%	140%	105%	60%	140%
F4 (C34 to C50)	5054220 5	5054220	<50	<50	NA	< 50	115%	60%	140%	127%	60%	140%	132%	60%	140%
Moisture Content	5054224	5054224	15.80	15.54	1.7%	< 0.1									

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Page 20 of 28

QC Exceedance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

AGAT WORK ORDER: 23H033859 PROJECT: 230477 ATTENTION TO: Peter Markesic

RPT Date: Jun 15, 2023		REFERENC	E MATE	RIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Sample Id	Measured	Accep Lim	ptable nits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		Value	Lower		,		Upper	,		Upper

O. Reg. 153(511) - Metals & Inorganics (Soil)

Antimony 5053925 135% 70% 130% 102% 80% 120% 104% 70% 130%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

O. Reg. 153(511) - Metals & Inorganics (Soil)

5054242 Antimony 102% 70% 130% 70% 130% 80% 120% 101%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

Method Summary

SAMPLED BY:SD

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

AGAT WORK ORDER: 23H033859

PROJECT: 230477

ATTENTION TO: Peter Markesic

SAMPLING SITE: South Niagara Hospital

Ortivi Eine erre:coutir magara ricopitar			
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE
Antimony Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP/MS
Arsenic Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP/MS
Barium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Beryllium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Boron Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS

Method Summary

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT AGAT WORK ORDER: 23H033859 PROJECT: 230477 ATTENTION TO: Peter Markesic

SAMPLING SITE:South Niagara Hos	pital	SAMPLED BY:SD	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Cadmium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	ICP-MS
Chromium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	BICP-MS
Cobalt Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	BICP-MS
Copper Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	BICP-MS
Lead Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	BICP-MS
Molybdenum Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	BICP-MS
Nickel Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	BICP-MS
Selenium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	BICP-MS
Silver Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	BICP-MS
Thallium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	BICP-MS
Uranium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	BICP-MS
Vanadium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	BICP-MS
Zinc Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	BICP-MS
Trace Organics Analysis			
Benzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Toluene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Ethylbenzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
m & p-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
o-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Xylenes (Total)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE

modified from CCME Tier 1 Method

GC/FID

VOL-91-5009

Terphenyl

Have feedback? Scan here for a quick survey!

5835 Coo Mississauga, Onta Ph: 905 712.5100 Fax: 905.712 5122 webearth.agatlabs.com

pers Avenue	Laboratory Use	On
rio L4Z 1Y2	Mayle Oudan He	-

22403	20110150	
ork Order #:	234033859	

Cooler Quantity: 2	LG #	248	4.64
Arrival Temperatures:	57	5.2	5.0

Chain of Custody Reco	rd in	this is a Dri	Inking Water s	ample, plea	se use Drini	king Water Chain of Custody Form (pota	ble water o	consume	d by huma	ns)		A	rrival Ter	mperatu	ures:		2 5.0	
Report Information: Company: Contact: Report Information: Mat Report Information: Company: Contact:		(Please	Regulatory Requirements: (Please check all applicable boxes) Regulation 153/04 Regulation 406 Sewer Use Sanitary Storm					Custody Seal Intact: LOOSE (16 ON) Notes: Turnaround Time (TAT) Required:					ING ON/A					
Phone: Reports to be sent to: 1. Email: 2. Email:		Soi	imatic natio	ca	Soil To	ble Indicate One Indicate One Indicate One Indicate One Indicate One Res/Park Agriculture Exture (Check One) Coarse CCME	8 [Obje	Region Water Q ctives (P			Re	egular ' Ish TAT	TAT I (Rush Su Busines ays	urcharges A	5 to 7 Busines	s Days Next Busines Day	35
Project Information: Project: Site Location: Sampled By:	04-	77 Ha	spita		Red	this submission for a cord of Site Condition? Yes No	Cer	-	Guldell te of A				For 'Sar	T is exc	lusive o	e prior notification f weekends and st Is, please contact	atutory holidays	
AGAT Quote #: Please note: If quotation numb Invoice Information: Company: Contact: Address: Email:	PC	, client will be t	billed full price for a		GW	Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered - Metals, Hg, CrVI, DOC	& Inorganics	S - Crvl, CHg, CHWSB F1-F4 PHCs			rociors 🗀	posal Characte	SPLP Rainwater	406 Characterization Package Metals, BTEX, F1-F4	vity: □Moisture □ Sulphide	II. II.	Ily Hazardous of Figh Concernation (1714)
Sample Identification	Da Sam	ate pled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals BTEX, F	VOC	PCBs	PCBs: Aroclors	Landfill TCLP:	Regulation SPLP:	Regulation pH, ICPMS	Corrosivity:		Poterina
1. TPI-SI	Ju S	8	AM PM	4	S	THE RESIDENCE OF THE PARTY OF T	fu.	X	X	en I		α5.		X				Ī
2. TP1-52 3. TP1-53 4. TP1-54			AM PM AM PM AM PM	3 3		AT THE STATE OF TH						(20) (20)		100				
5. TP2-51 6. TP2-53			AM PM AM PM			In a second								008				
8. TP3-51 9. TP3-52			AM PM AM PM AM PM	150 51 6		(** 16.1						er) His		001 x				
10 173 - 53		/	AM PM		1	English Control						GT.		215.				

AGAT | White Copy- AGAT opy - Client | Yellow Copy Samples Relinquished By (Print Name and Sign)

Page

Nº:

Chain of Custody Record

Report Information:

Company:

Contact:

Have feedback?

Scan here for a quick survey!

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

Regulatory Requirements:

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Lab	oratory	Use	Only
			-

Work Order #:	234033859					
Cooley Overstitus	216 #2 4.8464					

Cooler Quantity:	244	110	10	147
Arrival Temperatures:	5.7	52	0-14	5:0

Custody Seal Intact:	□Yes	□No	□N/
Notes:	CECE	(IF	

(Please check all applicable boxes) DODLL Regulation 153/04 Regulation 406 Sewer Use ☐ Storm Sanitary **Turnaround Time (TAT) Required:** Indicate One Indicate One ☐Ind/Com **Regular TAT** Region to 7 Business Days Res/Park Regulation 558 Rush TAT (Rush Surcharges App Prov. Water Quality Agriculture Objectives (PWQO) Soil Texture (Check One) 2 Business 3 Business Next Business CCME Other Days □ Coarse Days Day Fine OR Date Required (Rush Surcharges May Apply): Indicate One Is this submission for a Report Guideline on **Record of Site Condition?** Please provide prior notification for rush TAT **Certificate of Analysis** *TAT is exclusive of weekends and statutory holidays ☐ No ☐ Yes ☐ Yes □ No For 'Same Day' analysis, please contact your AGAT CPM O. Reg 153 O. Reg 406 CrVI, DOC Potentially Hazardous or High Concentration (Y/N) **Sample Matrix Legend** □B(a)P□PC andfill Disposal Characterization TCLP: Ground Water H Eg □ HWSB Ò Field Filtered - Metals, Paint S Soil Corrosivity: Moisture Metals - □ CrVI, □ Hg, SD Sediment Aetals & Inorganics BTEX, F1-F4 PHCs CLP: M& DVOCs Surface Water Comments/ Sample Matrix Special Instructions

Address:				
Phone: Reports to be sent to: 1. Email:	arkesi	Fax: _	on Ima	+.00
2. Email: Sal	aymi	@ 501	imat	-ca
Project Information:	02	041	Z	
Project:	de	0 177	11	
Site Location:	-n Vic	adara	4050	mal
Sampled By:	Shao	N.D.		
AGAT Quote #:	ole: If quotation numb	PO:	it will be billed full pric	e for analysis
Invoice Information:		7.5	Bill To Same:	Yes N
Company:				1
Contact:				
Address:	A	10.0/		
Email:	10.11			
politice. I series	1-2-4	ALC: UK	301	
Sample Identification	ation	Date	Time	# 0

1-TP4-52	Jn8	AM PM 3	5		X	X		
2. + 174-53		AM 3		CHANNA EST				
3. +P5-SI		AM 3 -						
4. 795-52	1	AM PM	ming bear				X	-) - -
5. TP5-83	1	AM PM 3	- The Light					
6. TP6 - S)		AM PM 3	-1.7					
7. TP6-Sd		AM 3	LOY		Huster Car Su		end lefts	
8. TP6-53		AM 3					GF-1	100
9. +97-51	- 11	AM 3						
10. TO 7 -52		AM 4			HIE /		X	
11. + P 7 - 53	IV	AM PM 3			ORC V	V	200	
Samples Refinquished By (Print Name and Sign):		Date Time	NO THE	Samples Received By (Print Name and S	Pa d	Date	19 h 2 Time 8:38	pan

Sampled

Page

5

Copy

Have feedback?

Scan here for a quick survey!

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122

Laboratory Use		03385	7
Work Order #:	don'	02780	1.
Cooler Quantity: 2	L62 +	2486	164.0
Arrival Temperatures:	5.7	15.21	5,0
Custody Seal Intact:	OOST	(CONO	□N/A
Notes: LC	oost	(18	

Comment of the second		Initalians.	Webearthagathabs.com	Cooler Quantity: 248 46 4		
Chain of Custody Reco	ord If this is a Drinking Water sample, plo	ease use Drinking Water Chain of Custody Form (p	otable water consumed by humans)	Arrival Temperatures: 57 52 5.0		
Report Information: Company: Contact: Cont		Regulatory Requirements:		Custody Seal Intact: Yes Notes:		
Contact: Address:	IVEN RESIL	Regulation 153/04 Regulation Table Indicate One Indicate One	☐ Sanitary ☐ Storm	Turnaround Time (TAT) Required: Regular TAT 5 to 7 Business Days		
Phone: Reports to be sent to: 1. Email: 2. Email: Project Information: Project: Site Location: Sampled By: AGAT Quote #: Please note: If quotation number is not provided, client will be billed full price for annihals.		Res/Park Agriculture Soil Texture (Check One)	Objectives (PWQO)	Rush TAT (Rush Surcharges Apphy) 3 Business		
		Coarse COME	Other Indicate One			
		Is this submission for a Record of Site Condition? □ Yes □ No	Report Guideline on Certificate of Analysis Yes No			
		Sample Matrix Legend	0. Reg 153			
Invoice Information: Company: Contact: Address: Email:	Bill To Same: Yes No	GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Field Filtered - Metals, Hg, CrVI, s & Inorganics - CrVI, CHWSB	ins Claracterization Toul Cosal Characterization Toul Cosal Characterization B(a)PClass Class Cl		
Sample Identification	Date Time # of Sampled Sampled Sampled Containers	Sample Comments/ Special Instructions	o o u	PCBs: Arock Landfill Disp. TCLP: □M&I Regulation PH. ICPMS N Corrosivity:		
1. TP8-S1 2. TP8-S2	JN8 AM AM PM	5	XX			
3. TP 8 - 53	AM PM AM PM					
5. TP9-52	AM PM					

AM

White Copy- AGAT Pink Copy - Client + Yellow Copy

Decument ID: DIV-78-1511-022

Any and all products and/or services provided by AGAT Labs are pursuant to the terms and conditions as set forth at www.agatlabs.com/termsandconditions unless otherwise agreed in a current written contractual document.

OHT

Have feedback? Scan here for a quick survey!

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

rrival Terrival Terri	Dund TAT AT (Rush s Busines Bu	Time surcharder Require e provide p	ed (Rude price)	es E E E E E E E E E E E E E E E E E E E	2 Sequilibrium Surrchard	ess Day ges May n for rus statuto	Next Day Apply Apply sh TAT	t Busir y): r idays	
rrival Terrival Terri	Seal Int Ound TAT T(Rush s Busines ays OR Date Please AT is exceeding by O. Re,	Time surcharder Require e provide p	(TA	to 7 2 Busing Days ash Subar notice the notice that notice t	equi Busin iness urchar	red: ess Day ges May on for rus statuto.	Next Day Apply Apply sh TAT	t Busir y): r idays	ness
irnardegularish TA	Busines ays OR Date Please AT is exceeded.	Time sss Require e provice clusive y' analy	Apply) ed (Rude pride of we	to 7 to 7 2 Busi Days ish Su pr noti	equi Busin iness urchar	ess Day ges May	Next Day Apply Apply sh TAT	y): T idays	
*7 For 'Sa 0. Reg 558	Please AT is exceeded to the control of the control	Require e provice clusive y' analy g 406	ed (Rude price)	Days Ish Su or noti Ekend	irchar ificatio ds and	n for ru statuto	Day Apply sh TAT ry holi	y): T idays	
	<u> </u>				П				(Z
CLP.	lch	age	18					100	
Landfill Disposal Characterization TCLP. TCLP: □ M&L □ VOCs □ ABNs □ B(a)P□ PCBs	Regulation 406 SPLP Rainwater Leach SPLP Metals □ VOCs □ SVOCs	Regulation 406 Characterization Package pH, ICPMS Metals, BTEX, F1-F4	Corrosivity: ☐ Moisture ☐ Sulphide						Potentially Hazardous or High Concentration (Y/N)
	×								
	Landfill Dispos	X	*		*				

Chain of Custody Record If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans) **Report Information:** Company: Contact: Address: Phone:

Project Information:

Date

Sampled

Time

Sampled

AM PM AM PM

AM PM

AM PM

P0: Please note: If quotation number is not provided, client will be billed full price for analysis

Invoice Information: Bill To Same: Yes No □

Regulatory Requirements: Sewer Use Regulation 153/04 Regulation 406 Sanitary Storm Indicate One ☐Ind/Com Region Res/Park Regulation 558 Prov. Water Quality Agriculture Objectives (PWOO) Soil Texture (Check One) CCME Other Coarse Fine

Is this submission for a **Record of Site Condition?**

□ No ☐ Yes

Sample Matrix Legend

Report Guideline on **Certificate of Analysis**

□ HWSB

□ CrVI, □ Hg,

BTEX,

PAHS

Metals & Inorganics

☐ Yes

D00

Field Filtered - Metals, Hg, CrVI,

□ No O. Reg 153

Company: Contact: Address: Email:

Sample Identification

Ground Water 0 Paint S Soil SD Sediment Surface Water

Comments/

Special Instructions

Sample

Matrix

of

Containers

3

3. 5. 6.

11. Samples Relinquished By (Print Name and Sign):

AM PM

Client 1 Yellow Copy

Pink Copy

10.

Reports to be sent to:

1. Email:

2. Email:

Project: Site Location:

Sampled By:

AGAT Quote #:

Sample Temperature Log

Client:	Soil 1	nat		COC# or Work Order #:	2340	33859
# of Coolers:	2 coo	lers peratures - Br	anch/Driver	# of Submissions: Arrival	Temperatures	s - Laboratory
	Cooler #1: 2-1		1_29	Cooler #1:		/
	Cooler #2: 4-&	1 4-2	14.4	Cooler #2	/	/
	Cooler #3:	/	./	Cooler #3	//	/,
	Cooler #4:	/	. /	Cooler #4:	//	/
	Cooler #5;	/	./	Cooler #5:		/
	Cooler #6:	/	/	Cooler #6:		
	Cooler #7:		./	Cooler #7:	/,/	X
	Cooler #8	/	./	Cooler #8	/_	//
	Cooler #9:	/	/	Cooler #9		/
	Cooler #10:	/	. /	Cooler #10:	/	/
IR Gun ID				IR Gun ID:		
	Rhiana			Taken By: Date		
Date (yyyy/mm/dd)	: June 9 20	خ <u>ح</u> Time: <u>ا (</u>	<u>/_:_7_</u> _ AM / PM	(yyyy/mm/dd):	Time:::	_ AIVI / PM

Instructions for use of this form: 1) complete all fields of info including total # of coolers and # of submissions rec'd, 2) photocopy and place in each submission prior to giving a WO#, 3) Proceed as normal, write the WO# and scan (please make sure to scan along with the COC)

Document ID: SR-78-9511.003 Date Issued: 2017-2-23

Page:_____ of ____

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT 401 GRAYS ROAD HAMILTON, ON L8E 2Z3 (905) 318-7440

JTO: Alex Laikosz

ATTENTION TO: Alex Lajkosz PROJECT: 230477

AGAT WORK ORDER: 24H122934

SOIL ANALYSIS REVIEWED BY: Sukhwinder Randhawa, Inorganic Team Lead

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Feb 28, 2024

PAGES (INCLUDING COVER): 12 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 12

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 24H122934

PROJECT: 230477

ATTENTION TO: Alex Lajkosz SAMPLED BY:AL 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT SAMPLING SITE: Mountrose/Biggar, NF

N/A

pH Units

2.4

N/A

NA

0.905

7.16

O. Reg. 153(511) - Metals & Inorganics (Soil) DATE RECEIVED: 2024-02-22 DATE REPORTED: 2024-02-28 TP103 SAMPLE DESCRIPTION: TP101 TP102 SAMPLE TYPE: Soil Soil Soil DATE SAMPLED: 2024-02-22 2024-02-22 2024-02-22 G/S **RDL** 5668983 5668984 5668985 Parameter Unit Antimony 1.3 0.8 <0.8 <0.8 < 0.8 μg/g Arsenic μg/g 18 1 5 7 7 173 186 Barium 220 2.0 193 μg/g 0.5 1.2 1.1 Beryllium μg/g 2.5 1.3 Boron μg/g 36 5 19 15 17 0.10 0.18 Boron (Hot Water Soluble) μg/g NA 0.15 < 0.10 Cadmium μg/g 1.2 0.5 < 0.5 < 0.5 < 0.5 Chromium μg/g 70 5 40 38 36 Cobalt 21 0.8 18.2 18.4 19.1 μg/g Copper μg/g 92 1.0 26.9 30.4 30.5 Lead μg/g 120 12 16 10 Molybdenum 2 0.5 0.6 0.7 0.7 μg/g Nickel 82 40 39 39 μg/g Selenium 1.5 0.8 <0.8 <0.8 <0.8 μg/g Silver μg/g 0.5 0.5 < 0.5 < 0.5 < 0.5 Thallium μg/g 1 0.5 < 0.5 < 0.5 < 0.5 Uranium μg/g 2.5 0.50 1.09 0.68 1.22 Vanadium 86 2.0 51.9 51.8 47.7 μg/g 86 82 Zinc μg/g 290 5 76 Chromium, Hexavalent μg/g 0.66 0.2 < 0.2 < 0.2 < 0.2 Cyanide, WAD < 0.040 < 0.040 < 0.040 μg/g 0.051 0.040 Mercury 0.27 0.10 < 0.10 < 0.10 <0.10 μg/g Electrical Conductivity (2:1) mS/cm 0.57 0.005 0.435 0.309 1.06

Certified By:

0.704

7.23

Sodium Adsorption Ratio (2:1)

pH, 2:1 CaCl2 Extraction

(Calc.)

0.594

7.15

AGAT WORK ORDER: 24H122934

PROJECT: 230477

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

SAMPLING SITE: Mountrose/Biggar, NF

ATTENTION TO: Alex Lajkosz SAMPLED BY:AL

O. Reg. 153(511) - Metals & Inorganics (Soil)

5668983-5668985 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

DATE RECEIVED: 2024-02-22 DATE REPORTED: 2024-02-28

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 406/19 TABLE 1: Full Depth Background Site Condition - RPIC

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

parameter.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED

Subminds faur Randinas O

CHEMIST

Certified By:

AGAT WORK ORDER: 24H122934

PROJECT: 230477

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT SAMPLING SITE:Mountrose/Biggar, NF

%

ATTENTION TO: Alex Lajkosz SAMPLED BY:AL

	O. Reg. 153(511) - PHCs F1 - F4 (Soil)											
DATE RECEIVED: 2024-02-22							DATE REPORTED: 2024-02-28					
	S	AMPLE DESC	CRIPTION:	TP101	TP102	TP103						
		SAMF	PLE TYPE:	Soil	Soil	Soil						
		DATE S	DATE SAMPLED: 2		2024-02-22	2024-02-22						
Parameter	Unit	G/S	RDL	5668983	5668984	5668985						
Benzene	μg/g	0.02	0.02	<0.02	<0.02	<0.02						
Toluene	μg/g	0.2	0.05	<0.05	< 0.05	< 0.05						
Ethylbenzene	μg/g	0.05	0.05	< 0.05	< 0.05	< 0.05						
m & p-Xylene	μg/g		0.05	<0.05	< 0.05	< 0.05						
o-Xylene	μg/g		0.05	< 0.05	< 0.05	< 0.05						
Xylenes (Total)	μg/g	0.05	0.05	<0.05	< 0.05	< 0.05						
F1 (C6 to C10)	μg/g		5	<5	<5	<5						
F1 (C6 to C10) minus BTEX	μg/g	25	5	<5	<5	<5						
F2 (C10 to C16)	μg/g	10	10	<10	<10	<10						
F3 (C16 to C34)	μg/g	240	50	<50	<50	<50						
F4 (C34 to C50)	μg/g	120	50	<50	<50	<50						
Gravimetric Heavy Hydrocarbons	μg/g		50	NA	NA	NA						
Moisture Content	%		0.1	20.0	20.4	19.9						
Surrogate	Unit	Acceptab	le Limits									
Toluene-d8	% Recovery	60-1	40	86.5	84.8	82.0						

79

83

87

60-140

Certified By:

Terphenyl

AGAT WORK ORDER: 24H122934

PROJECT: 230477

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

SAMPLING SITE: Mountrose/Biggar, NF

ATTENTION TO: Alex Lajkosz SAMPLED BY:AL

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2024-02-22 DATE REPORTED: 2024-02-28

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 406/19 TABLE 1: Full Depth Background Site Condition - RPIC

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5668983-5668985 Results are based on sample dry weight.

The C6-C10 fraction is calculated using Toluene response factor.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Quality Control Data is available upon request.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Exceedance Summary

AGAT WORK ORDER: 24H122934

PROJECT: 230477

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

ATTENTION TO: Alex Lajkosz

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
5668985	TP103	ON 406/19 T1 RPIC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.57	1.06

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

AGAT WORK ORDER: 24H122934

PROJECT: 230477 ATTENTION TO: Alex Lajkosz

SAMPLING SITE:Mountrose/Biggar, NF SAMPLED BY:AL

	,, <u> </u>			Soi	l Ana	alysis	3								
RPT Date: Feb 28, 2024			С	UPLICATI			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits				ptable nits	Recovery	Lie	eptable mits
		ld	'				Value	Lower	Upper		Lower	Upper	,	Lower	Upper
O. Reg. 153(511) - Metals & Inor	ganics (Soil)														
Antimony	5666560		<0.8	<0.8	NA	< 0.8	100%	70%	130%	99%	80%	120%	83%	70%	130%
Arsenic	5666560		3	3	NA	< 1	116%	70%	130%	98%	80%	120%	103%	70%	130%
Barium	5666560		71.6	74.2	3.6%	< 2.0	108%	70%	130%	100%	80%	120%	98%	70%	130%
Beryllium	5666560		< 0.5	<0.5	NA	< 0.5	113%	70%	130%	103%	80%	120%	111%	70%	130%
Boron	5666560		9	11	NA	< 5	89%	70%	130%	102%	80%	120%	113%	70%	130%
Boron (Hot Water Soluble)	5663705		2.45	2.67	8.6%	< 0.10	104%	60%	140%	96%	70%	130%	NA	60%	140%
Cadmium	5666560		< 0.5	< 0.5	NA	< 0.5	101%	70%	130%	100%	80%	120%	98%	70%	130%
Chromium	5666560		25	27	7.7%	< 5	115%	70%	130%	106%	80%	120%	93%	70%	130%
Cobalt	5666560		4.5	4.5	0.0%	< 0.8	110%	70%	130%	99%	80%	120%	100%	70%	130%
Copper	5666560		7.4	7.9	6.5%	< 1.0	100%	70%	130%	101%	80%	120%	90%	70%	130%
Lead	5666560		4	4	NA	< 1	110%	70%	130%	101%	80%	120%	95%	70%	130%
Molybdenum	5666560		<0.5	<0.5	NA	< 0.5	121%	70%	130%	115%	80%	120%	124%	70%	130%
Nickel	5666560		11	11	0.0%	< 1	108%	70%	130%	98%	80%	120%	97%	70%	130%
Selenium	5666560		<0.8	<0.8	NA	< 0.8	135%	70%	130%	98%	80%	120%	97%	70%	130%
Silver	5666560		<0.5	<0.5	NA	< 0.5	112%	70%	130%	101%	80%	120%	93%	70%	130%
Thallium	5666560		<0.5	<0.5	NA	< 0.5	118%	70%	130%	95%	80%	120%	94%	70%	130%
Uranium	5666560		< 0.50	0.51	NA	< 0.50	128%	70%	130%	109%	80%	120%	110%	70%	130%
Vanadium	5666560		21.0	22.2	5.6%	< 2.0	118%	70%	130%	102%	80%	120%	105%	70%	130%
Zinc	5666560		32	33	3.1%	< 5	112%	70%	130%	101%	80%	120%	111%	70%	130%
Chromium, Hexavalent	5670206		<0.2	<0.2	NA	< 0.2	88%	70%	130%	97%	80%	120%	72%	70%	130%
Cyanide, WAD	5670191		<0.040	<0.040	NA	< 0.040	107%	70%	130%	102%	80%	120%	110%	70%	130%
Mercury	5666560		<0.10	<0.10	NA	< 0.10	117%	70%	130%	101%	80%	120%	102%	70%	130%
Electrical Conductivity (2:1)	5663705		1.97	1.97	0.0%	< 0.005	107%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	5663705		11.6	12.0	3.4%	NA									
pH, 2:1 CaCl2 Extraction	5670191		6.65	6.86	3.1%	NA	97%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

CHARTERED S Submitted Facilities of CHEMIST

Certified By:

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

PROJECT: 230477

SAMPLING SITE: Mountrose/Biggar, NF

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT WORK ORDER: 24H122934

ATTENTION TO: Alex Lajkosz

SAMPLED BY:AL

SAMI LING SITE.MOUTHOS	OAIVII LED DT.AL														
			Trac	ce Or	gani	cs Ar	alys	is							
RPT Date: Feb 28, 2024			Г	DUPLICAT	E		REFERE	NCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE		KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	منا ا	ptable nits	Recovery	1 1 1 1 1 1	eptable mits
		lu						Lower	Upper		Lower	Upper	1 -	Lower	Upper
O. Reg. 153(511) - PHCs F1 - F	=4 (Soil)														
Benzene	5672279		< 0.02	< 0.02	NA	< 0.02	107%	60%	140%	112%	60%	140%	96%	60%	140%
Toluene	5672279		< 0.05	< 0.05	NA	< 0.05	92%	60%	140%	97%	60%	140%	81%	60%	140%
Ethylbenzene	5672279		< 0.05	< 0.05	NA	< 0.05	105%	60%	140%	93%	60%	140%	80%	60%	140%
m & p-Xylene	5672279		< 0.05	< 0.05	NA	< 0.05	101%	60%	140%	95%	60%	140%	81%	60%	140%
o-Xylene	5672279		<0.05	<0.05	NA	< 0.05	104%	60%	140%	95%	60%	140%	84%	60%	140%
F1 (C6 to C10)	5672279		<5	<5	NA	< 5	98%	60%	140%	101%	60%	140%	99%	60%	140%
F2 (C10 to C16)	5672485		< 10	< 10	NA	< 10	113%	60%	140%	90%	60%	140%	97%	60%	140%
F3 (C16 to C34)	5672485		< 50	< 50	NA	< 50	109%	60%	140%	115%	60%	140%	114%	60%	140%
F4 (C34 to C50)	5672485		< 50	< 50	NA	< 50	90%	60%	140%	96%	60%	140%	112%	60%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

ed By:

Page 8 of 12

QC Exceedance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

AGAT WORK ORDER: 24H122934

PROJECT: 230477

ATTENTION TO: Alex Lajkosz

RPT Date: Feb 28, 2024		REFERENC	E MATERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Sample Id	Measured	Acceptable Limits	Recovery	Acceptable Limits		Recovery	Lin	ptable nits
	Pierre	Value	Lower Uppe			Upper	, ,		Upper

O. Reg. 153(511) - Metals & Inorganics (Soil)

Selenium 135% 70% 130% 98% 80% 120% 97% 70% 130%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

Method Summary

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT AGAT WORK ORDER: 24H122934 PROJECT: 230477 ATTENTION TO: Alex Lajkosz

SAMPLING SITE:MA

SAMPLING SITE: Mountrose/Biggar, NF	=	SAMPLED BY:AL						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Soil Analysis		,						
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES					
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER					
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS					
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS					
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE					
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES					
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE					

Method Summary

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT AGAT WORK ORDER: 24H122934 PROJECT: 230477 ATTENTION TO: Alex Lajkosz

SAMPLING SITE:Mountrose/Biggar, NF		SAMPLED BY:AL							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Trace Organics Analysis	<u>'</u>								
Benzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS						
Toluene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS						
Ethylbenzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS						
m & p-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS						
o-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS						
Xylenes (Total)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS						
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID						
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID						
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS						
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID						
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID						
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID						
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE						
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE						
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID						

Chain of Custody Record

Have feedback?

Scan here for a quick survey!

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Laboratory U	se Only
Work Order #:	244122934
	L. A. C. 157 = 1

	Cooler Q Arrival Te		100	MD C 3-3 3 3.4	00LEAL
	Custody Notes:	Seal Int	tact:	DOSE LEE	
1		T (Rush s Busine Pays	ess	2 Business Days d (Rush Surcharges Mages)	Next Busines Day ay Apply):
		AT is ex	clusive	e prior notification for r f weekends and statut ils, please contact you	tory holidays

Report Information: Company: Contact: Address: Phone: Reports to be sent to: 1. Email: 2. Email: Company: Alex Cajks 7 Alex	Regulatory Requirements: (Please check all applicable boxes) Regulation 153/04 Table Indicate One Indicate One Ind/Com Res/Park Agriculture Soil Texture (Check One) Coarse Fine	Sewer Use Sanitary Storm Region Prov. Water Quality Objectives (PWQO) Other	Custody Seal Intact: Notes: Turnaround Time (T/ Regular TAT Rush TAT (Rush Surcharges Appl 3 Business Days OR Date Required (F				
Project Information: Project: Site Location: Sampled By: AGAT Quote #: PO: Please note: If quotation number is not provided, client will be billed full price for analysis,	Is this submission for a Record of Site Condition? Yes No Sample Matrix Legend	Report Guideline on Certificate of Analysis Yes No O. Reg 153	Please provide p *TAT is exclusive of w For 'Same Day' analysis, O. Reg 406				
Invoice Information: Company: Contact: Address: Email: Date Time # of Sa	P Paint S Soil SD Sediment SW Surface Water	Field Filtered - Metals, Hg, CrVI, als & Inorganics als - CrVI, CHg, CHWSB X, F1-F4 PHCs s	PCBS: Aroclors ☐ Readill Disposal Characterization TCLP: TCLP: ☐ M& ☐ VOCS ☐ ABNS ☐ Righp ☐ PCBS Regulation 406 SPLP Rainwater Leach SPLP: ☐ Metals ☐ VOCS ☐ SVOCS Regulation 406 Characterization Package pH. ICPMS Metals, BTEX, F1.F4 Corrosivity: ☐ Moisture ☐ Sulphide				
Sample Identification	Matrix Special Instructions	Metals Metals VOC PAHS PCBS	PCBs Landfill TCLP. E Regula SPLP:1 Regula PH. ICF				

										_
1. 103	2/22	₽M PM	3 5		1 7 1	1				
2. 11/2		AM PM		4-11				8		
3. 402		AM PM		Heartin I						III,
4.	0	AM PM	ii element							
5.		AM PM								
6.		AM PM		Per la	0 20 100				100	
7.		AM PM			A DIE HER I I BE	34 45	0.23			
8,		AM PM				- 00	I King I		10-11	Jan 1
9.		AM PM				EX.	7000			
10.		AM PM				53	EBSE I		1 1	
11.	I I OV	AM					10世		1900	
Sarger's Edinguished By (Poht Name and Sign):		Datis	Time.	Samples Received By (Print Name and Sign):	00	Date	Time			